Design Your Campus Network with EVPN-VXLAN

TANet Conf 2021

Prado Yang Dec. 2021

Agenda

Why EVPN-VXLAN in Campus ?How to build EVPN-VXLAN in Campus ?Microsegmentation in CampusCampus Fabric Design using Mist Cloud

Why EVPN VXLAN in Campus?

Problems with Campus Networks Today

1) Layer 2 user devices connecting to layer 3 Network

2) Proprietary technologies to eliminate STP loops

3) Non-flexible and non-scalable networks

4) Not designed for Mobility and IOT

5) Increasing number of ACLs on every device

EVPN-VXLAN Solves Many Campus Problems

Layer 2 user network connecting to layer 3 internet
 1) Layer 2 overlay network over layer 3

Proprietary technologies to eliminate STP
 2) Standards based technology

Non-Flexible and non-scalable networks3) Flexible and scalable

X Not designed for Mobility and IOT

4) Fast convergence and microsegmentation

Why VXLAN ?

12 bit VLAN id (4K VLANs) versus 24-bit VNI (16 Million addresses possible)

* VNI VXLAN Network Identifier

How Does VXLAN work?

Virtual Tunnel End Point

What is EVPN?

Problem Statement

Multi path layer 2 VPN service

Limitation with VPLS

- No support for all active forwarding
- no Multipoint-to-Multipoint LSP
- Required Operators to configure a lot of parameters on top of access configuration

EVPN is BGP extension to transport layer 2 & layer 3 IP information

EVPN Benefits (RFC 7209)

- All active forwarding
- Multipoint to Multipoint LSP
- Minimize flooding of multi-destination frames

EVPN Benefits

VNI	MAC address
10	a1.b1.c1.d1.e2.f1
11	a1.b1.c1.d1.e2.f2

- All active multi homing
- Multi protocol BGP (MP BGP) as overlay
 - Control plane learning
 - MAC IP bindings distributed over control plane
- MAC & IP Integrated routing and bridging
 - VPLS/VPWS a layer 2 technology
 - A separate L3 gateway needed
 - A pure Layer 3 service creates intra-subnet issues.
 - EVPN optimum for inter-subnet and intra-subnet as the packets have both MAC and IP information
- Reduces provisioning pain
 - Policy driven control on route advertisements
 - Consistent policy-based forwarding

EVPN-VXLAN Benefit in Campus #1: Flexibility

- Need for consistent VLANs across locations
- Current solutions inadequate
 - GRE tunnels: No redundancy
 - VPLS: No active active paths
- EVPN-VXLAN
 - No extra config needed
 - Active-active paths

EVPN-VXLAN Benefit in Campus #2: Scalability

- Large namespace in overlay (16M)
- Enhanced support for both layer 2 and layer 3
- Forwarding decision made by scalable control plane (BGP)
- Integrated routing/bridging for optimized forwarding in overlay
- Fine grained policy control for better network utilization

EVPN-VXLAN Benefit in Campus #3: Micro Segmentation

1. Replaces device specific ACLs

2. Network wide Group based policy

3. Micro segmentation

4. Macro Segmentation

Server

EVPN-VXLAN Benefit in Campus #4: Standards Based

	Standards based
Stacking	×
VPC	×
Fabric Path	×
MC-LAG	×
Instant access	×
EVPN-VXLAN	\checkmark

- Lack of standards-based Technology in campus
- Previous technologies
 - Stacking
 - VPC
 - Fabric path
- Standards based
 - EVPN: RFC 7209
 - VXLAN: RFC 7348

How to build EVPN-VXLAN in Campus ?

Campus Fabric Core-distribution Using CRB

Centrally-Routed Bridging

- L3 VXLAN gateway on core switches, L2 VXLAN gateway on core and distribution switches
- IRBs at the core provide L3 routing services
 - Simpler configurations as IRBs are only defined at the core
- Traffic is placed in the appropriate VLAN/VXLAN in the distribution layer
 - Enables location agnostic endpoint connectivity
 - Same default gateway address for a given L2 domain anywhere in the campus or across campuses

NCE: Configuring an EVPN-VXLAN Campus Fabric with CRB

Campus Fabric Core-distribution Using ERB

Edge-Routed Bridging

- L2/L3 VXLAN gateways are configured on distribution devices
 - IRB interfaces for VLANs/VXLANs are defined at distribution to provide L3 routing services
- Core layer provides IP underlay routing only
- Traffic is placed in the appropriate VLAN/VXLAN at the distribution layer
 - Enables location agnostic endpoint connectivity
 - Same default gateway address for a given L2 domain anywhere in the campus or across campuses

NCE: Configuring an EVPN-VXLAN Campus Fabric with ERB

Campus Fabric IP Clos

End-to-end EVPN-VXLAN

- VXLAN L2 gateway extended to the access layer with the new EX4400
- L2/L3 VXLAN gateway at the access layer
 - Access switches can be part of a Virtual Chassis
- Traffic is placed in the appropriate VLAN/VXLAN at the distribution layer
 - Enables location agnostic endpoint connectivity
 - Same default gateway address for a given L2 domain anywhere in the campus or across campuses

Charles Clos – 1953

Spine and Leaf

JUNIPEr 20

IP Clos Network Requirements

Requirement	OSPF	IS-IS	BGP
Advertise prefixes	Yes	Yes	Yes
Scale	Limited	Limited	Yes
Traffic Engineering	Limited	Limited	Yes
Traffic Tagging	Limited	Limited	Yes
Multi-Vendor Stability	Yes	Yes	Even more so

5 Steps to Building EVPN-VXLAN in Campus

EVPN-VXLAN Campus Fabrics

EVPN-VXLAN Campus Fabrics

1. Simple IP Fabric Underlay

- Simple Layer 3 fabric at the core and distribution layer
- No Spanning Tree or proprietary L2 multi-chassis technologies
- Topology agnostic
 - IP-Clos topology recommended
 - Consistent scale out architecture
 - Predictable performance and scaling
- Use OSPF or eBGP to enable loopback reachability between all boxes

2. Overlay Control Plane

- MP-BGP EVPN control plane
- iBGP between the loopbacks
 - Core to core

Overlay

Underlay

- Distribution to core
- Core switches act as Route Reflectors

L2 Gateway

- Eliminates need for full mesh BGP
- Consistent BGP configuration on all distribution switches

· • • • • • •

IBGP

LAG to Fabric

L3 VXLAN Gateway

3. L2 Gateway Config

VXLAN Encapsulation	Configures a VXLAN encapsulation type. VNI list establishes which VXLAN virtual network identifiers (VNI) can be propagated over the L3 overlay.

Mapping VLAN to VNI	Map VLAN to a unique VNI
---------------------	--------------------------

4. L3 VXLAN Gateway

- IRBs can be placed in the same VRF
 - All subnets in a single routing table instance and have reachability to each other
- IRBs can be placed in different VRFs
 - Subnets part of the same VRF will have a single routing table instance and will have reachability to each other
 - Subnets part of different VRFs will have separate routing table instances and can communicated with each other only if routes are explicitly leaked between the VRFs
 - Inter-VRF traffic can also be forced to be routed through a stateful firewall for advanced security between VRFs

5. LAGs to EVPN Fabric

• EVPN supports N-way "scale-out" Ethernet multihoming

Overlay

L2 Gateway

No ICL link required

Underlay

- Flexible overlay supports layer 2 and layer 3 services
- Active-Active Multihoming
- Multi-homed Access switches are identified in the overlay by unique Ethernet Segment ID (ESI)
- Any access layer switch

LAG to Fabric

L3 VXLAN Gateway

EVPN Multihoming (ESI-LAG)

Campus Fabric Core-Distribution Using CRB

How to Configure an EVPN-VXLAN Fabric for a Campus Network With CRB

Campus Fabric Core-Distribution Using ERB

How to Configure an EVPN-VXLAN Fabric for a Campus Network With ERB

Campus Fabric IP Clos Config Steps

How to Configure an IP Clos Fabric for a Campus Network

Microsegmentation in Campus using EVPN-VXLAN

Standards-based microsegmentation

0100100 1001101 101101 01101 01101 01101 ACLs

Group Based Policies (GBP)

- Leverage underlying VXLAN infrastructure
- Granular access policy & controls
- Location agnostic end to end security

Outcomes

- Consistent security policies across the network
- Ability to block lateral threats
- Reduce ACLs

GBP Building Blocks

JUNIPEr 37

Campus Deployment using Juniper Mist Cloud

Cloud native architecture for campus networks

Campus Fabric Deployment

Choose the topology and allocate device roles

- Define the intent for the topology definition (IP-Clos, Multi-homing etc)
- Choose device roles

 access,
 distribution, core

2						
EVPN Confi	iguration	1. Topolog	y 2. Nodes 3	Network Setting	4. Ports	5. Confirm
Ports elect switch ports for EV	PN and ESHLag connectio	ns				
Collapsed Core Sw	itches					
Switch	Site	Model	Uplink to Core	Downlink to Core	ESI-Lag t	to Access
5W-0103	Campus-West	EX-4650	ge-0/0/0-1	ge-0/0/4-5		
	0 12 14 16 18 20 22 1 13 15 17 19 21 23	24 26 28 30 000000 25 27 29 31	32 34 35 38 40 0 0 0 0 0 0 33 35 37 39 41	42 44 45 43 45 47 1	**************************************	
Unlink to Core	m.000	Select 1 or	~1			
Downlink to Com		Column 1 and				
Downink to core	Bacana	Select 1 po				
ESI-Lag to Access	ge-0/0/14-20, ge-					Select 23 ports
🗌 🖆 SW-0003	Campus-West	EX-4650	-	-	-	
Access Switches						
Switch	Site	Model	ESI-Lag to Core			
SW-0003	Facility-0001	EX-2300	-			
SW-0003	Facility-0001	EX-2300	-			
SW-0003	Facility-0001	EX-2300	-			
. 💿 SW-0003	Facility-0001	EX-2300	-			

Define Physical Connections

 Provide the physical connectivity between – core/distribution and access devices

\smile			
EVPN Configuration	ogy 2. Nodes 3. Network Settings 4. Ports 5. Confirm		
Define networks, routing options, and port configuration Networks Vinual Routing and Forwarding options	Core → Access Port Profile Profile for Collapsed Core switch ports that correct to Access switches	Access → Core Port Profile Profile for Access switch ports that connect to C switches	
vlant01 101 >	Port Enabled Enabled Disabled	Port Enabled Enabled Disabled	
vlant02 102 >	Mode	Mode	
viant04 104 >	Port Network (Untagged/Native VLAN)	Port Network (Untagged/Native VLAN) None	
Add Network	VolP Network	VolP Network	
VRF Vitual Routing and Forwarding options Enable Disable	Trunk Networks All networks Mantot (101) × vlan102 (102) × vlan103 (103) × +	Trunk Networks All networks Van101 (101) × Van102 (102) × Van10	
internal,wf 2 networks 🗦	Speed	Speed	
internal,wf,2 I network	Auto V Duolex	Auto V Duplex	

Define Networks of Interest

 Configure the user networks

Apply the intent

 Verify, apply and confirm the intent of provisioning the fabric

Thank you JUNPE driven by Mist AI